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CRACK GROWTH IN METALS AT ELEVATED TEMPERATURE 

A. G. Cherepanov and G. P. Cherepanov UDC 539.375+539.376 

Creep is the capacity of all solids to undergo irreversible deformation under constant 
loads due to the thermal motion and directional migration under load of the main sources of 
such deformation: inclusions, voids, dislocations, and microcracks. The latter, coalescing 
at the final stage of creep, form a macrocrack which separates the structural element. 
Creep in metals usually becomes noticeable at temperatures greater than one-third of the 
melting point (in K). 

The phenomenological approach to creep is semi-empirical and is based on many addition- 
al assumptions regarding irreversible (plastic) strains that have been justified on the ba- 
sis of experiments for specific materials under certain conditions [i]. 

The new approach being taken to fracture mechanics in creep and plasticity consists of 
the following: the material is considered to be linearly or nonlinearly elastic, while the 
sources of irreversible strain are examined in explicit form [2, 3]. In this approach, 
irreversible strain is calculated as being the result of the nucleation, movement, and 
growth of these sources, while fracture is represented by a certain calculable critical mo- 
ment of instability of plastic strain. It is possible to examine different deterministic 
and statistical systems of sources by using the methods of the theory of diffusion and mi- 
gration to study their motion and development [2, 3]. 

Since the 1970s and the publication of [4], the growth of creep cracks in metals has 
been subjected to massive experimental study within the framework of classical fracture mech- 
anics on the basis of stress intensity factors [5] and invariant energy integrals [6-18]. 

As was shown in [19], the ~K-concept in the Leonov-Panasyuk-Dugdale model follows from 
the general energy-based Fc-concept. The analog of the ~K-concept for linear viscoelastic 
materials was developed in [20]. In this case, the F c- and 6K-concepts differ. 

In the theory of elasticity, invariant integrals were first found by the Maxwell method 
by Eshelby in 1951. The basic invariant energy integral (more general than Eshelby's) used 
as a criterion in the theory of fracture was obtained directly from the conservation law 
in [6] for an arbitrary solid. Obtained with it was the solution of the problem 
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of the stress and strain distribution near the end of a crack in an incompressible nonlinear- 
ly elastic body described by a power law (this solution was also later obtained in [25, 26]). 
The latter solution was used to analyze creep cracks in [i0]. In [7], the Eshelby integral 
was employed to calculate the stress and strain concentration in notches. The authors of 
[9] used the invariant integral as a criterion in the theory of fracture. In [21-24], the 
integral was used to calculate the energy flux at the end of a dynamic moving crack. 

As a parameter controlling the growth of a creep crack, experimenters have tried the 
following parameters: stress intensity factor KI; crack opening 6; rate of opening 6; in- 
variant integrals J and C*; the mean stress in the net cross section Onet, etc. [10-18]. In- 
vestigators have found specific functional correlations between the crack growth rate C and 
various other parameters, but no general law has yet been established. Even the question of 
the best fracture parameter essentially remains open. In our opinion, the most interesting 
empirical result is the conclusion regarding the approximate linearity of the relations s ~ 
6, s ~ C* seen in several studies in a certain range of loads. We should also point out the 
studies [27-36] on creep cracks. It can be justifiably asserted that there is currently a 
crisis in this area of study, this situation being the result of two main factors. 

i. Difficulties in setting up conclusive experiments involving the growth of creep 
cracks. In fact, subcritical crack growth in metals is in most cases due to chemical or 
electrochemical reactions occurring at the end of a crack with the participation of the me- 
tal and the environment [ii]. Thus, strictly speaking, creep tests should be conducted in a 
vacuum or inert gas (with special chemical monitoring); this condition has been considered 
only in a few studies. Furthermore, even an inert medium does not guarantee that the reason 
for subcritical crack growth is creep of the metal, since the latter may be due to atomic hy- 
drogen dissolved in the metal's lattice [ii]. Thus, it is also necessary to carefully check 
for hydrogen in the lattice. 

2. Difficulties in formulating a sufficiently simple and general phenomenological 
theory of creep and plasticity. The main problem is that classical creep theories are satis- 
factory for large values of T and T but only for low values of p (where T is temperature, p 
is the characteristic stress, and T is the loading time), while classical theories of plas- 
ticity are satisfactory at high p but low ~ and T. The region of the tip of a creep crack is 
characterized by high p and T within a broad range of ~. Thus, a combined but sufficiently 
simple theory of plasticity and creep is needed in this region. 

The most promising method of resolving this crisis is to avoid semi-empirical theories 
of fracture and to change over to theories based only on fundamental atomic and microscopic 
constants. This is the quantum-mechanical approach to fracture proposed in [37-40]. In 
accordance with the quantum mechanics of fracture, the material is considered to be a linear- 
ly elastic body with a characteristic crystalline structure, while the irreversible plastic 
strains and creep and the process of creep-crack growth itself (i.e., the fracture process) 
is calculated-on the basis of analysis of the nucleation and movement of microcracks, dislo- 
cations, inclusions, and voids due to thermal fluctuations. 

Below, we examine a simple phenomenological approach to the growth of a creep crack 
which is based on a combination theory of plasticity and creep. 

Special Theory of Plasticity and Creep. Let a homogeneous isotropic medium have the 
properties of an incompressible, nonlinearly elastic, power-law body and an incompressible, 
nonlinearlyviscous, power-law fluid. Thus, 

e v " e  

e v 
e~j=0, e~j=0; (2) 

the governing relations for the elastic component sije: 

( t ) D ~ [ J ~• (3) eij= % \ % ] 

i ~hh6ij); j2=T3 ( ~  ~h~SiJ)(~J---3 - 
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while the governing relations for the viscous component eijv" 

y 
_~_~hhSi#) ' DV / j ~+i eij iT s 

t 

Here r are the strains; oij are the stresses; r is the strain rate; D e , J, and D v are 
the intensity of the elastic strains and stresses and the rates of viscous deformation; ~ij 
is the Kronecker symbol; ~, X, Ss, ~ Ys, ~s are empirical constants chosen so as to obtain 
the best approximation of the plasticity curve o vs. m (with different assigned ~) and the 
creep curve m vs. E (with different assigned a); the dots above the letters denote a time de- 
rivative. The range of variation of K and X from two to ten covers most of the metals and 
alloys encountered in practice. Since we have the relationships tsOs = A = const, ys T-%-z = 
B = const, there are altogether four independent parameters present in the creep-plasticity 

theory being examined. 

Together with the equations of equilibrium and compatibility, Eqs. (1)-(4) constitute 
a closed system of equations of creep-plasticity theory. It follows from here that in the 
limiting cases Ys = 0 and m s = 0, we obtain power-law plasticity and power-law creep, respec- 

tively. 

The following obvious analogy is valid: if only the loads at the boundary of the body 
are assigned, the stress distribution for Ys = 0 will be identical to the distribution for 

ms = 0. 

It should be noted that the proposed special theory of plasticity-creep is distinguish- 
ed by its simplicity and the fact that it is general enough for many practical applications. 
The general plasticity-creep theory is described by a time-dependent functional F of the 

stress tensor ~, strain tensor ~ , and strain-rate tensor ~: 

f ( ~ ,  e, 8) = O. ( 5 )  

In the simplest case, this corresponds to the hypothesis of an equation of state [i]. 

Neighborhood of the Tip of a Moving Crack. We will examine the stress and strain dis- 
tribution in the small region of the tip of a normal-rupture crack which is steadily growing 
at a constant rate along the x axis in the medium being considered. Here, a dot above a 
letter denotes the operator VS/Sx, where V is the crack growth rate. The coordinate x is 
reckoned from the crack tip, which can be considered semi-infinite. In polar coordinates r@ 
with their origin at the crack tip, the main equations of the special theory of plasticity- 
creep take the following form: 

a~ t ~TrO ~r-- ~0 O~rO i ~crO 
Or nL--~ - a - -~  q- r = 0 ,  T + _  F a_g_q_ 2 %Or = 0 ;  (6 

w h i l e  t h e  s t r a i n  c o m p a t i b i l i t y  c o n d i t i o n  

0 [ &~o~ a ~  aG a s(r%) (7 
2 7 7  Lr T )  ao ~ r T + r a,.2 , 

and t h e  r e l a t i o n s  be tween  t h e  s t r a i n s ,  s t r e s s e s ,  and s t r a i n  r a t e s  ( p l a n e  s t r a i n )  

~" 8s ~-s (O'r - -  0"0) (~ ~ 0), ( 8 

ero = ero Jr o~ TrO; 

"v "v 8v t ~ = -- % = = -f (?d~,) (Y/**)~ (~  - -  ~o), (9 
"v 

~o = (?d,c~) (d/T~) ~ ~7.o (~ >~ 0), 

where 

i V~  ]/-((~r --  %)2 -k 4"C~o, D ~ = V 2  V (e~)2 -k (e%)2, (10 d = -  i- 

"v '~ D e =  ii,cr ,~• b = V + ,. 

t (~, + %), ~ = 0), b ~ = ?, (]/'~,)~+~ (o~ = T 
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In the steady-state case, eik = VSeik/Sx , i.e. 

~ = 0~ = Y ~ - 7  Z ( ~ " - ~ ) '  (11) 

g Ox ~s TrO ~z = COS0 Or r O0 " 

The s u b s c r i p t s  r and 0 d e n o t e  components  o f  t he  q u a n t i t i e s  in  t h e  d i r e c t i o n s  r and 0, r e s p e c -  
tively. 

Invariant Criterion of Local Fracture. For a steadily moving crack, the F-integral [6, 
ii] is an invariant parameter in the vicinity of the crack tip: 

r = ~ (Un~ - z~;ui,~n;) dE (i, ] = t, 2), 
2 

( 1 2 )  

Here, u i and oij are the Cartesian coordinates of the components of the displacement vector 
and stress tensor (the subscript 1 coincides with the subscript x); nj are components of the 
unit vector of an outward normal to the contour E enveloping the end of the crack; U is the 
strain energy: 

U =  a~j deij = ~ij ~ dx --  ~ + 2 T 

We emphasize that the J- and C*-integrals are invariant in the given case and cannot be 
used as fracture criteria (the J-integral is invariant only for elastic media, while the C*- 
integral is invariant only for viscous fluids with the velocity potential W, when sij = 8W/ 
8oij and when the crack is stationary). 

Any number of other invariant F-integrals can easily be obtained from Eqs. (12) and (13) 
through the substitutions 

dnui dneij ( dnDe "v dnDV ) 
Ui-+--~x ~ , S~i~" dx~------ T D e - *  dx~ D - + - -  (14)  

' d x  n 

(n i s  any p o s i t i v e  i n t e g e r ) .  I n s t e a d  o f  d /dx  in  Eqs.  ( 1 4 ) ,  in  t h e  g e n e r a l  c a s e  we can use  
d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  t ime  d / d t  o r  t he  o p e r a t i o n  o f  v a r i a t i o n  ( i n c r e m e n t a l  i n -  
c r e a s e )  o f  t h e  l o a d i n g  p a r a m e t e r :  t h e  i n v a r i a n c e  o f  t h e  r - i n t e g r a l s  r emains  [ 1 1 ] .  The J -  
and C * - i n t e g r a l s  c o i n c i d e  w i t h  t h e  c o r r e s p o n d i n g  F - i n t e g r a l s  in  s p e c i a l  c a s e s .  I t  s h o u l d  be 
remembered t h a t  t he  r - i n t e g r a l s  remain  i n v a r i a n t  f o r  any c o n t i n u o u s  media  [6,  11] .  

I f  as E we choose  a na r row r e c t a n g l e  a l o n g  t h e  x a x i s  w i t h  t h e  d i m e n s i o n s  2L • 2~, t h e n  
t h e  f i r s t  t e rm in  (12)  d i s a p p e a r s ,  w h i l e  t h e  second  i s  s i m p l i f i e d  and r e p l a c e d  by a i 2 u i ,  x. 
In  t h e  p r e s e n t  c a s e  o f  p l a n e  s t r a i n  and n o r m a l - r u p t u r e  c r a c k s ,  t h e  i n t e g r a l  (12)  i s  r educed  
to  t h e  form 

S r = - - 2 g  aosin-2Oduo : a t :  -~'--~0, (15)  
0 

since at y = r = r sine dx = d(r cos0) = -ydO/sin 2 8; F is the dissipation of energy on the 
formation of a unit surface of the crack. Since this value is finite and nonzero, the pro- 
duct oeSue/Sx should have a singularity on the order of r -I in the neighborhood of the 
crack tip [6, ii]. The parameter s retains its value as an invariant criterion of local 
fracture also for cracks moving with an arbitrary variable velocity V(t) if the function~(t) 
is continuous, in this case, there is always a certain sufficiently small region of the 
crack tip in which the stress and strain field can be made to differ as little as desired 
from the steady-state case (local stationariness [ii]). Here, the general law of crack 
growth is written as 

v = c ( r )  ( v = ~ ) .  

In  t h i s  e q u a t i o n ,  G(F) i s  a f u n c t i o n  d e t e r m i n e d  e x p e r i m e n t a l l y  o r  on t h e  b a s i s  o f  s t r u c t u r a l  
t h e o r y .  

A n a l y s i s  o f  t h e  S t r e s s  and S t r a i n  F i e l d  n e a r  t h e  End o f  a Crack .  The s t r e s s  and s t r a i n  
f i e l d  in  t he  n e i g h b o r h o o d  o f  t h e  t i p  o f  a c r a c k  moving in t h e  medium be ing  examined i s  de-  
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termined from the solution of system (6)-(11) with homogeneous boundary conditions for the 

half-plane 0 < r < ~, 0 ~ O <- ~: 

Tr0 ~-- 0, O~/O0 = 0 at 0 = 0, ~0 ---- rr0 ~ 0 at 0 = ~. (16) 

With % = 0, conditions (16) constitute the symmetry condition. 

We will transform boundary-value problem (6)-(11), (16) to dimensionless variables: 

7 = r y / V ~ ,  7 = x , ~ / V ~ ,  -di~ = a ~ / a ~ ,  

u = ~ / ~  (7  = J / ~ ) .  
We d e s i g n a t e  6 = Os/X s (0 <_ 6 <_ ~ ) .  Here ,  t h e  main r e l a t i o n s  ( 8 ) - ( 1 1 )  t a k e  t h e  form 

~ :o t 7 ~ (G~. 

~o = 2'%~o + 8 >'+: 
- - c o  

I 8>.+: ~ (17)  - -  ~o) + y J (~, - -  ~o) dx, 
- - o o  

]TrO dx, 

while Eqs. (6) and (7) and conditions (16) remain the same (in new variables). 

Thus, the solution of the boundary-value problem depends on three free parameters: 6, 
K and I. Computer calculations performed by numerical methods in the two limiting cases 
yield similarity asymptotes which are easily studied. We will examine them here. 

At 6 § 0, the "viscous" term in (17) is negligible, while the boundary-value problem 

permits the group of transformations r' = clr, Oik' = c2oik, Sik' = caeik, where ci, c2, c a 
are parameters of the group (c 3 = c2~+i). It follows from this and from the finite value of 
F in Eq. (15) that the solution of the boundary-value problem has the form 

a~h = Q ~ ( 0 ) r ~ , ~  - f ~ h ( 0 ) ~ : - ~ .  ( 1 8 )  

Inser t ing the solution (18) into (17) at ~ = 0 gives us [6, 25, 26] ~ = --1/(K + 2). Thus, 
at6§ 

\V% 

The functions ~ik and Eik are determined numerically from the solution of the homogeneous 
boundary-value problem to within one a r b i t r a r y  constant. 

At ~ § ~, the " e l a s t i c "  term in Eqs. (17) is negl ig ible  and the boundary-value problem 
permits the same group of transformations.  Thus, i t s  solution has the form (18). I n se r t -  
ing (18) into (17) at 6 >> i, it is not hard to see that ~ = -2/(I + 2). This means that at 
~§ 

. o, / - 1  

The f u n c t i o n s  f l ik '  and E ik '  a r e  d e t e r m i n e d  n u m e r i c a l l y  f rom t h e  s o l u t i o n  o f  t h e  c o r r e s p o n d -  
ing  homogeneous b o u n d a r y - v a l u e  p rob l em to  w i t h i n  one a r b i t r a r y  c o n s t a n t .  

With a r b i t r a r y  6, t h e  s o l u t i o n  o f  t h e  b o u n d a r y - v a l u e  p rob lem i s  c o n v e n i e n t l y  " j o i n e d  
t o g e t h e r "  f rom t h e s e  two b o u n d a r y - l a y e r  a s y m p t o t e s  in  t h e  f o l l o w i n g  manner:  

aih = Aik(0~8~-Y(u+2)+ Bih(O, 8~-2/(~+2)~ (19)  

where Aik § ~ik(O) at 6 * 0; Bik + ~ik'(0) at 6 § ~. It is evident from this that if i > 
2(< + i), then at r § 0 the dominant term in solution (19) will be the first term, while at 
r § ~ it will be the second term; if I < 2(K + i), the the second term will be the dominant 
term in solution (19) at r § 0 and the first term will be so at r § ~. 

This means that at I > 2(K + i) there will be a small "plastic core" in the immediate 
vicinity of the tip of a moving crack. This core will be immersed in a "viscous" medium, and 
at I < 2(K + i)there exists a small viscous region near the tip of a moving crack immersed in 

a plastic medium. At 1 > 2(K + i), the medium will behave similarly to a viscous 
fluid, and its plasticity properties will be manifest only near the crack front (where 
they are dominant). At I < 2(K + i), the medium will behave similarly to an elastic body, 
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and its viscous properties will be manifest only near the crack front (where they are domi- 
nant). At the branch point X = 2(K + i), the boundary-value problem permits a similarity 
solution for all r, and the plasticity and creep properties of the medium are of equal impor 
tance for the motion of the crack. 

The motion of the crack in the continuum is accompanied by the formation of a "core" 
near its front. This core has special properties compared to the properties of the material 
away from the front. The radius of the core is on the order of Vcs/u s. At k > 2(K + i), 
the material of the core behaves in a nonlinearly elastic manner (while the material away 
from the front is similar to a nonlinearly viscous fluid), but at k < 2(~ + i), the core ma- 
terial behaves in a nonlinearly viscous manner (while the material away from the front is 
similar to a nonlinearly elastic body). 

We are grateful to V. G. Lagutin and A. L. Sadovnikov for their help in the survey at 
the introduction of the present study. 
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NUMERICAL INVESTIGATION OF THE PROCESS OF NONDEFORMABLE CYLINDER 

PENETRATION AT CONSTANT VELOCITY INTO A COMPRESSIBLE FLUID 
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Detailed investigation of the process of nondeformable solid penetration into different 
media is of great interest in connection with a number of scientific-technical problems of 
practical importance. Analytical, experimental, and numerical methods (see [1-3, 4-6, 7-10], 
respectively, say) are utilized to solve the problems occurring here. Because of the com- 
plexity of solving the problems by an analytical method, the analysis of a limited number of 
situations turns out to be accessible. Formulation of experiments in this area is fraught 
with a number of difficulties. Moreover, the integrated characteristics of the process, for 
instance, the depth of penetration of the body, are usually fixed in the experiments. A de- 
tailed pattern of impactor interaction with deformable compressible media can be obtained by 
using the numerical solution of similar problems. 

The process of bodies of cylindrical shape penetrating a compressible fluid is inves- 
tigated in this paper by numerical modeling methods. Dependences of the main characteris- 
tics of the process (the drag force F, the cavern location relative to the body) on the 
Mach number M = V/c0 (V is the~insertion velocity, and c o is the sound speed in the obstacle 
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